THE INFLUENCES OF SUBSTITUENT AND CONFIGURATIONAL GEOMETRY ON THE CIRCULAR DICHROISM OF LACTAMS

Toshio WAKABAYASHI,* Yoshinori KATO, Kenzo WATANABE, and Masahiko SAITO Teijin Institute for Biomedical Research 4-3-2 Asahigaoka, Hino, Tokyo 191

Chiroptical properties of five- and six-membered monocyclic lactams 1-10 of known absolute configuration have been studied. It was found that the N-methyl group dominantly contributed to the $n \rightarrow \pi^*$ Cotton effects of δ -lactams; N-methylated lactams 7-10 exhibit positive Cotton effects while the unsubstituted lactam 6 shows a negative Cotton effect.

Intense attention has been paid in recent years on optical rotation studies on the amide chromophore, as it is the smallest subunit of proteins. $^{1}\,$ In connection with our asymmetric synthesis of substituted pyrrolidones 2 and piperidones³ we have investigated a relationship between the Cotton effect

 $1 R=H, Y=CO_2H$

6 Y=H, Y=CO₂H

 $2 R=CH_3, Y=CO_2H$

 $\frac{7}{2}$ R=CH₃, Y=CO₂H

3 R=CH₃, Y=CO₂CH₃ 8 R=CH₃, Y=CO₂CH₃

4 R=CH₃, Y=CH₂OH

9 R=CH₃, Y=CH₂OH

5 R=CH₃, Y=CH₂Br

10 R=CH₃, Y=CH₂Br

and the absolute configuration. The five- or six-membered lactams are good model compounds for a study of optical activity of the amide chromophore since they are considered to be conformationally rigid.

The absolute configurational determination of (\underline{S}) -5-oxo-2-pyrrolidineacetic acid $(\underline{1})$ and (\underline{S}) -6-oxo-2-piperidineacetic acid $(\underline{6})$ and the derivatization of the compounds $\underline{2}$, $\underline{3}$, $\underline{7}$, $\underline{8}$ and $\underline{9}$ have recently been reported. $\underline{^2}$, $\underline{^3}$ Reduction of the ester $\underline{3}$ with NaBH, gave the compound $\underline{4}$. The bromides $\underline{5}$ and $\underline{10}$ were obtained by treatment of $\underline{4}$ and $\underline{9}$ with phosphorous tribromide, respectively.

Compound	[\theta]	λ(nm)
(\underline{S}) -5-oxo-2-pyrrolidineacetic acid $(\underline{1})$	-6,400	215
(\underline{S}) -1-methy1-5-oxo-2-pyrrolidineacetic acid $(\underline{2})$	-2,400	223
methy1 (\underline{S})-1-methy1-5-oxo-2-pyrrolidineacetate ($\underline{3}$)	-2,200	223
(\underline{S}) -5-(2-hydroxyethyl)-1-methyl-2-pyrrolidone (4)	-4,800	217
(\underline{S}) -5-(2-bromoethy1)-1-methy1-2-pyrrolidone (\underline{S})	-3,200	219
(\underline{S}) -6-oxo-2-piperidineacetic acid $(\underline{6})$	-3,900	220
(\underline{S}) -1-methy1-6-oxo-2-piperidineacetic acid (7)	+1,700 ^b	228
methy1 (\underline{S})-1-methy1-6-oxo-2-piperidineacetate ($\underline{8}$)	+1,300 ^b	227
(\underline{S}) -6-(2-hydroxyethyl)-1-methyl-2-piperidone (9)	+600 ^b	229
(\underline{S}) -6-(2-bromoethy1)-1-methy1-2-piperidone ($\underline{10}$)	+900 ^b	228

Table CD Data of Lactams of MeOHa

The CD data of the lactams are summarized in Table. All the pyrrolidones $\frac{1-5}{2}$ with side chains of (\underline{S}) -configuration at C-2 showed the negative $n \to \pi^*$ Cotton effect. Urry recently reported the crystal structure of (\underline{S}) -5-iodomethyl-2-pyrrolidone in which the amide hydrogen was placed in the plane of the amide group. Either (\underline{S}) -5-oxo-2-pyrrolidineacetic acid $(\underline{1})$ or its N-methylated compound $(\underline{2})$ shows the negative sign of $n \to \pi^*$ Cotton effect.

a) All the CD spectra were recorded on JASCO spectropolarimater, J-20.

b) Corrected for 59% optical purity of the sample used.

Since these lactams obey Schellman's quardrant rule on the sign of the $n + \pi$ * Cotton effect of amides, ⁵ the N-substituted methyl group in 2 is considered to be also in the plane of the amide group. The negative Cotton effects of other pyrrolidones 3, 4 and 5 suggest that N-methyl group is in the plane of the amide group in these compounds, also. Furthermore it should be pointed out that CD of (S)-pyroglutamic acid has a positive Cotton effect, ⁶ but (S)-5-oxo-2-pyrrolidineacetic acid 1 with the same absolute configuration shows the opposite sign. These results are consistent with Urry's observation in the substituent effects on the sign of Cotton effect. ⁴

On the other hand the corresponding six-membered piperidones with C-2 substituents of (\underline{S}) -configuration behave differently. The remarkable effect caused by a N-methyl group is the inversion in the sign of $n\to\pi^*$ Cotton effects; the N-methylated lactam 7 exhibits a positive sign, while 6 shows a negative sign.

Ogura et al. recently reported the reversal of the $n\to\pi^*$ Cotton effects between (-)-menthone lactam and N-methyl-(-)-menthone lactam. They explained the results by the conformational equilibrium of a sevenmembered lactam.

R: C-2 substituent

The remarkable effect of the N-methyl substituent on the $n \to \pi^*$ Cotton effect of a sixmembered lactam will be also interpreted by the conformational equilibrium. Of four different ring conformations A, B, C and D for the δ -lactams δ -10, the conformer D can be excluded because of the flagpole arrangement of the acetic acid group. The negative Cotton effect of the lactam δ coincided with the one anticipated on the basis of the chirality δ of a preferred half-chair conformer δ . N-Methylated compounds 7-10 will be more stable in the half-chair conformer δ than in the conformers δ and δ by the repulsion between the N-methyl group and the acetic acid group.

Above results involve the novel demonstration of a high sensitivity of Cotton effect to the substituent on N-atom in δ -lactams and are also useful for determination of the absolute configuration of the series of C-2 substituted pyrrolidones or C-2 substituted piperidones.

Acknowledgement.

We thank Drs. T. Noguchi and S. Ishimoto for their support.

References

- a. B. J. Litman and J. A. Schellman, J. Phys. Chem., <u>69</u>, 978 (1965).
 - b. D. W. Urry, <u>Proc. Nat. Acad. Sci. U.S.</u>, <u>60</u>, 394 (1968).
 - c. D. W. Urry, <u>ibid</u>., <u>60</u>, 1114 (1968).
 - d. N. J. Greenfield and G. D. Fasman, J. Amer. Chem. Soc., 92, 177 (1970).
 - e. H. Ogura, H. Takayanagi and K. Furuhata, Chemistry Lett., 387 (1973).
- 2. T. Wakabayashi, Y. Kato and K. Watanabe, Chemistry Lett., 1283 (1976).
- 3. T. Wakabayashi, K. Watanabe, Y. Kato and M. Saito, Chemistry Lett., 223 (1977).
- 4. J. A. Molin-Case, E. Fleischer and D. W. Urry, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 4728 (1970).
- 5. J. A. Schellman, Accounts Chem. Res., 1, 144 (1968).
- 6. D. W. Urry, Ann. Rev. Phys. Chem., 19, 477 (1968).
- 7. H. Ogura, H. Takayanagi, K. Kubo and K. Furuhata, <u>J. Am. Chem. Soc.</u>, <u>95</u> 8056 (1973).
- 8. O. Červinka, L. Hub, F. Snatzke and G. Snatzke, <u>Collection Czeckslov</u>.

 <u>Chem. Comm.</u>, <u>38</u>, 897 (1973).

(Received January 20, 1977)